ANALYTICAL AND EXPERIMENTAL STUDY OF MIXED
CONVECTION IN TUBE BUNDLES WITH A LONGITUDINAL FLOW

V. M. Borishanskii, M. A. Gotovskili, UDC 536.252:621.039.5/6
and E. V, Firsova

A solution is given to the heat problem of mixed convection in vertical tube bundles with a
relative spacing s/d = 1.2 and 1.4, The results have been checked out experimentally with
a forced flow of liquid sodium.

Liquid-metal heat carriers flow at low velocities in many components of nuclear power plants both
under steady-state design conditions and during transients.

Large temperature gradients which appear under these conditions may have an appreciable effect on
the heat transfer. At small values of the Peclet number, characteristic of such flow modes, the effect
of turbulent transfer is small. In view of this, an analytical study becomes much simpler and can be done
with satisfactory engineering accuracy.

For solving the problem of mixed convection in a vertical tube bundle under hydrodynamically and
thermally stable conditions, the authors have made certain simplifying assumptions: not only that the flow
is hydrodynamically and thermally stable but also that the physical properties of the medium (except its
density) are independent of the temperature, the density is a linear function of the temperature, and the
temperature gradient along the channel is constant. Under these stipulations, the equation of heat transfer
and the equation of hydrodynamics become
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where 8t/8x = A = const; p = py[1-B{t—t)].

If one considers bundles with a wide relative spacing only (s/d =1.4), then the method of an equiva-
lent annulus will make these equations one-dimensional:
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Differentiating the last equation and eliminating t will yield the fourth-order equation:
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Fig. 1. Calculation according to Eq. (6), for ascending flow; z = VRa.

Fig. 2. Test data on heat transfer with natural convection in the tube
bundle: ascending flow (1, 2); descending flow (3, 4). Calculations ac-
cording to Eq. (7) for a tube bundle with s/d = 1.4 with ascending flow
(2) and descending flow (3). Analogous data for the tube in [1] (1, 4).

with the boundary conditions
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Here £* represents the outside boundary of the equivalent annulus, and the last equation satisfies the con-
dition of temperature field symmetry;
Et
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is the integral condition.
The general solution to Eq. (3) appears in two forms depending on the algebraic sign of Ra = k!,

When natural convection and forced convection (Ra < FO) concur (at the wall), then the sdlution for the
velocity field is

o = Aber (k) + Bbei (k&) - C ker (KE) + Dkei (KE). (6)

Functions berx, beix, kerx, and keix are Thompson functions. They are proportional, respectively, to
the real and the imaginary parts of first-kind and second-kind Bessel functions of the argument xvj. Con-
stants A, B, C, and D are determined from conditions (4) and (5).

The values of w calculated according to Eq. (6) for £* =1.5 are shown in Fig. 1.

The Nusselt number was calculated according to the formula for an equivalent annulus with the modi-
fied Lyon integral:
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The results of numerical integration for {* =1.5 are shown in Fig. 2.

Analogous calculations were made for Ra > 0 (descending flow). Here the general solution for the
velocity field is

© = Al (KE) -+ BY, (KE) + Cl, (KE) + Dk, (kE)- 8
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The results of calculations by formulas (7) and (8) for descending flow with £* = 1.5 are shown in
Figs. 2 and 3.

For comparison, in Fig. 2 are also shown the calculations in [1] pertaining to the effect of natural
convection during descending and ascending flow through a tube.

The effect of natural convection on the heat transfer was verified experimentally in tube bundles
with a relative spacing s/d = 1.4 and 1.2 during ascending and descending flow of sodium.

The tests were performed in a closed circulation system with an electromagnetic pump. The geo-
metrical characteristics of the test bundles are given in Table 1.

The bundles consisted of 7 tubes and a jacket with expellers. The same calorimeter with movable
thermocouples was used in the tests with s/d = 1.4 and s/s = 1.2 bundles, this calorimeter being placed
at the center of a bundle,

Each bundle was tested with the heat carrier flowing in either of the two directions: downward or up-
ward (the active segments of the system were stabilized vertically). In these tests the authors measured
the temperature of the calorimeter wall, the temperature of sodium at the entrance to and at the exif from
the bundle as well in the center cells at a distance 50 mm away from the heating zone, the flow rate of
sodium, and the electric power drawn by the heaters. The heat-transfer coefficients were defined in terms
of the dimensionless number

Nu = o .
A

The temperature difference defining the heat-transfer coefficient for the thermal stabilization zone
{a = gq/At) was calculated by two methods. First it was determined from the difference between the tem-
perature reading at the wall and the temperature at the center of cells adjoining the calorimeter (this tem-
perature being recorded on a coordinate plotter). This difference was corrected for the temperature drop
across the calorimeter wall (the calorimeter was made of copper). In our case the temperature difference
was defined in terms of the maximum temperature drop. For that reason, it included the correction equal
to the average between one for jet flow and one for laminar flow. These corrections, in turn, were cal-
culated according to formulas by Sparrow and Loeffler [2, 3] for the temperature field and the mean tem-~
perature differences. For bundles with a relative spacing s/d = 1.4, Atygx/Atyean = 1.4 in the case of a
jet stream through the tubes and Atyax/Atmean = 1.2 in the case of a laminar stream through the tubes.
In the second method of calculating the temperature difference for the heat-transfer coefficient, a straight
line corresponding to the mean-over-the-mass stream temperature was drawn parallel to the straight line
representing the wall temperature past the stabilization zone. It must be noted that, inasmuch as the tests
were performed at small values of the Peclet number, the actual stream temperature was probably



TABLE 1. Geometrical Characteristics of Tube Bundles

Geometrical parameters
inside i 5 P draulicdias
pmdle Moorer diameter of }acnf/e cross .lenth of h?rc_lrauhc hydraudic dia:
of jacket, | tube ,mm section, eating Hiameterof |meter of
mm | mm? one, mm  kell, do,, mmfpundle, dp, mm
sd=1,4 107 .22 5240 800 25,5 25,5
sd=1,2 88 i 22 2581 800 12,9 12,9

somewhat higher because of heat leakage from exit to entrance. By evaluating the data in the form shown
earlier, we obtained a Nusselt number Nu* form which the actual Nusselt number could be calculated ac-

cording to the formula in [4]:
Nu*

Nu ==
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The first method of determining the temperature difference did not require such a procedure, because
the stream temperature was measured there directly in the heating zone.

The minimum value of the Peclet number in these tests was Pe ~ 20.

The test data for the bundle with s/d = 1.4 are shown in Flg 2. Analogous results were obtained also
for bundles with s/d = 1.2.

The Nusselt number is almost constant here, inasmuch as Pe < 100, and so along the ordinate axis
we have plotted the ratio Nu/Nug (Nug denoting the Nusselt number for purely forced convection). A com-
parison between test points and calculated curves indicates that Nu differs from Nug by more than would
be expected theoretically. This can, apparently, be explained by stray measurement errors and, especially,
by mutual effects between the center cell and the peripheral cells, which may cause the temperature
curves for the center cell to be nonlinear. The distinct segregation of test points corresponding to the
two directions of flow, respectively, however, is certainly attributable to natural convection. It is inter-
esting to note that the test points lie closer to the curves for a circular tube. On the other hand, quite
clearly, in calculations by the equivalent-annulus method the effect of natural convection appears some-
what reduced because of the reduced maximum transverse dimension of the channel. It may be assumed
that the actual curve lies somewhere between the curve for a bundle and the curve for a circular tube
(Fig. 2).

Earlier in [5] the authors have numerically solved the problem of heat transfer by mixed convection
for a tube bundle with a relative spacing s/d = 1, with various sheath thicknesses and with various tube
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radii for various values of VRa. The calculations, made by the boundary collocation method, have shown

4
that in a close packed bundle even at high values of YRa (up to 7) the temperature nonumiformity is not very
different from the temperature nonuniformity under purely forced convection. A comparison between data
for bundles with s/d = 1.4 and 1.2 shows a diminishing, though not very sharply, effect of natural convec-
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tion here. Our limited test facilities did not make it possible to cover a wide range of VRa values, because
increasing the diameter of tubes would require long active zones, and yet the longitudinal temperature
gradients were already large enough under existing test conditions.

Nevertheless, our tests covered the entire practical range of the Rayleigh number and provided suf-
fucient data to suggest formulas for heat transfer with natural convection.

When natural and forced convection occur in the same direction, then the heat transfer may be cal-
culated by formulas for purely forced convection: some surface margin will then become available. When
natural and forced convection occur in opposite directions, then the reduction of heat transfer can be esti-
mated by the formulas fora circulartube. The calculated reduction of heat transfer will also be somewhat

too high.
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